Scale - Space Texture Analysis

نویسندگان

  • Andrew P. Bradley
  • Paul T. Jackway
  • Brian C. Lovell
چکیده

In this paper we propose a technique for classifying images by modeling features extracted at di erent scales. Speci cally, we use texture measures derived from Pap smear cell nuclei images using a Grey Level Co-occurrence Matrix (GLCM). For a texture feature extracted from the GLCM at a number of distances we hypothesise that by modeling the feature as a continuous function of scale we can obtain information as to the shape of this function and hence improve its discriminatory power. This hypothesis is compared to the traditional method of selecting a given number of the best single distance measures. It is found, on the limited data set available, that the classi cation accuracy can be improved by modeling the texture features in this way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scale Space Texture Classification Using Combined Classifiers with Application to Ultrasound Tissue Characterization

Texture is often considered as a repetitive pattern and the constructing structure is known as texel. The granularity of a texture, i.e. the size of a texel, is different from one texture to another and hence inspiring us applying scale space techniques to texture classification. In this paper Gaussian kernels with different variances (s ) are convolved with the textures from Brodatz album to g...

متن کامل

Multi-scale gray level co-occurrence matrices for texture description

Texture information plays an important role in image analysis. Although several descriptors have been proposed to extract and analyze texture, the development of automatic systems for image interpretation and object recognition is a difficult task due to the complex aspects of texture. Scale is an important information in texture analysis, since a same texture can be perceived as different text...

متن کامل

Nonlinear Scale Space Theory in Texture Classification Using Multiple Classifier Systems

Textures have an intrinsic multiresolution property due to their varying texel size. This suggests using multiresolution techniques in texture analysis. Recently linear scale space techniques along with multiple classifier systems have been proposed as an effective approach in texture classification especially at small sample sizes. However, linear scale space blurs and dislocates conceptually ...

متن کامل

Morphological hat-transform scale spaces and their use in texture classification

In this paper we present a multi-scale morphological method for use in texture classification. A connected operator similar to the morphological hat-transform is defined, and two scale-space representations are built. The most important features are extracted from the scale spaces by unsupervised cluster analysis, and the resulting pattern vectors provide the input of a decision tree classifier...

متن کامل

E cient Rotation Invariant Feature Extraction for Texture Segmentation - via Multiscale Wavelet Frames

This work presents an approach to the extraction of rotation invariant features for texture segmentation using multiscale wavelet frame analysis. The texture is decomposed into a set of bandpass channels by a circularly symmetric wavelet lter, which then gives a measure of edge magnitudes of the texture at di erent scales. The texture is characterized by local energies over small overlapping wi...

متن کامل

Dynamic Texture Recognition Using Time-Causal Spatio-Temporal Scale-Space Filters

This work presents an evaluation of using time-causal scalespace filters as primitives for video analysis. For this purpose, we present a new family of video descriptors based on regional statistics of spatiotemporal scale-space filter responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002